Molecular Vibrations of Aluminum Trichloride Monomer with Application of the Keating Bendings

- T. Mogstad^a, S. J. Cyvin^b, B. N. Cyvin^b, J. Brunvoll^b, and G. Díaz Fleming^c
- ^a Laboratory of Inorganic Chemistry and ^b Division of Physical Chemistry, The University of Trondheim, N-7034 Trondheim-NTH, Norway
- ^c Departamento de Química, Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
- Z. Naturforsch. 40 a, 373 378 (1985); received January 30, 1985

The vibrational spectra and previous normal coordinate analyses of AlCl₃ are reviewed. The valence force field (VFF), central force field (CFF) and Keating force field (KFF) are tested. KFF is found to be the best one of these approximations with regard to the agreement with an observed isotopic frequency. A final force field is taken from a very recent work. It confirms that KFF is superior to both CFF and KFF. The data of a Coriolis constant, mean amplitudes of vibration and the Bastiansen-Morino shrinkage effect are calculated and discussed.

The vibrational frequencies and harmonic force constants of AlCl₃ seem now to be well established [1]. Consequently we find this molecule to be well suited for testing the applicability for a new type of internal coordinates, referred to as Keating's bending [2]. This coordinate is implied in a potential proposed by Keating [3] in the theory of lattice dynamics. In the context of molecular vibrations of isolated species Keating's bendings have been successfully applied to BF₃ [4], the other boron trihalides [5] and SO₃ [6]. A preliminary communication [7] shows that also an application to AlCl₃ is promising.

Valence-, Central- and Keating Coordinates

Keating's bending, \varkappa [2], involves three atoms like the ordinary (Decius') bending [8, 9]. The s vector [9] of \varkappa for a terminal atom is parallel to the opposite bond; cf. Figure 1. For one atom the figure also shows the s vectors of $R \alpha$ (perpendicular to the adjacent bond) and d, the nonbond (Urey-Bradley type [10]) interatomic distance deviation.

A standard set of symmetry coordinates for the planar symmetrical XY₃ molecular model [11] is given in Figure 1. These coordinates are referred to as the symmetry valence coordinates. On substituting the Decius bendings $(R \alpha s)$ by ds the symmetry

Reprint requests to Prof. S. Cyvin, Division of Physical Chemistry, The University of Trondheim, N-7034 Trondheim-NTH, Norwegen.

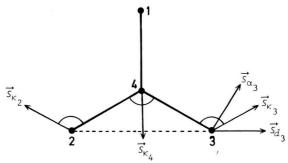


Fig. 1. The planar symmetrical XY₃ molecular model; symmetry D_{3h} . s-vectors are shown for one of the Keating bendings, viz. \varkappa_1 . For $R \, \alpha_1$ and d_1 the s-vectors are given only for one atom, viz. No. 3. R denotes the equilibrium bond length. Symmetry coordinates are given. The alternative degenerate pairs (species E') are the symmetry valence (VAL)-, central (CEN)- and Keating (KEA) coordinates

$$(A_1')$$
 $\frac{1}{\sqrt{3}}(r_1+r_2+r_3)$

$$(A'_2)$$
 $R \gamma$ (out-of-plane coordinate)

$$\begin{aligned} &\text{VAL} & \begin{cases} \frac{1}{\sqrt{6}} \left(2\,r_1 - r_2 - r_3 \right) \,, & \frac{1}{\sqrt{2}} \left(r_2 - r_3 \right) \\ \frac{R}{\sqrt{6}} \left(2\,\alpha_1 - \alpha_2 - \alpha_3 \right) \,, & \frac{R}{\sqrt{2}} \left(\alpha_2 - \alpha_3 \right) \end{cases} \\ &\text{CEN} & \begin{cases} \frac{1}{\sqrt{6}} \left(2\,r_1 - r_2 - r_3 \right) \,, & \frac{1}{\sqrt{2}} \left(r_2 - r_3 \right) \\ \frac{1}{\sqrt{6}} \left(2\,d_1 - d_2 - d_3 \right) \,, & \frac{1}{\sqrt{2}} \left(d_2 - d_3 \right) \end{cases} \\ &\text{KEA} & \begin{cases} \frac{1}{\sqrt{6}} \left(2\,r_1 - r_2 - r_3 \right) \,, & \frac{1}{\sqrt{2}} \left(r_2 - r_3 \right) \\ \frac{1}{\sqrt{6}} \left(2\,\alpha_1 - \alpha_2 - \alpha_3 \right) \,, & \frac{1}{\sqrt{2}} \left(\alpha_2 - \alpha_3 \right) \end{cases} \end{aligned}$$

0340-4811 / 85 / 0400-0373 \$ 01.30/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

central coordinates [11, 12] emerge. In an analogous way we define the symmetry Keating coordinates [4, 6] by means of the Keating bendings; cf. Figure 1.

The G matrix block of species E' in terms of the standard coordinates is given by Cyvin [11] and at many other places. In terms of the symmetry central-and Keating coordinates one has

$$G_{33}^{c} = \frac{3}{2} \mu_{X} + \mu_{Y} = G_{33}, \quad G_{34}^{c} = -\frac{1}{2} 3^{1/2} \mu_{Y},$$

 $G_{44}^{c} = \frac{3}{2} \mu_{Y}$ (1)

and

$$G_{33}^{k} = G_{33}, \quad G_{34}^{k} = \frac{1}{2} (3 \mu_{X} - \mu_{Y}),$$

 $G_{44}^{k} = \frac{1}{2} (3 \mu_{X} + 5 \mu_{Y}),$ (2)

respectively. Here μ_X and μ_Y denote as usual the inverse atomic masses of the appropriate atoms.

Let the usual force constants of the E' species be given by (F_{33}, F_{34}, F_{44}) . When this set is transferred to the two other coordinate sets considered here one obtains

$$F_{33}^{c} = F_{33} + 12^{1/2} F_{34} + 3 F_{44},$$

$$F_{34}^{c} = 2 (F_{34} + 3^{1/2} F_{44}), \quad F_{44}^{c} = 4 F_{44}$$
 (3)

and

$$F_{33}^{k} = F_{33} + \frac{1}{3} (12^{1/2} F_{34} + F_{44}),$$

$$F_{34}^{k} = \frac{2}{3} (3^{1/2} F_{34} + F_{44}), \quad F_{44}^{k} = \frac{4}{3} F_{44}.$$
 (4)

Experimental Works and Previous Normal Coordinate Analyses

The experimental works of vibrational spectroscopy are reviewed here in order to show the long way it took to establish the frequencies with confidence and to give an idea about the experimental uncertainties.

Three vibrational frequencies of AlCl₃ are found in the tables of Landolt-Börnstein [13] from 1951. They are quoted in Table 1. However, we have not been able to locate the original sources of these data in spite of the references [14, 15] cited in Landolt-Börnstein. Later research has shown these frequencies to be completely wrong. Before that they had been used in some normal coordinate analyses [16–20], which of course only have historical interest today. One of these works [17] gives calculated mean amplitude of vibration [11].

In a mainly thermodynamic work published in 1951 by Heise and Wieland [21] the investigators estimated the AlCl₃ vibrational frequencies (cf. Table 1) from related compounds with astonishing intuition (see below). Their estimates for AlBr₃, however, seem to be somewhat dubious when compared with later experimental evidence [22].

The first reliable observed frequencies for AlCl₃ are: v_3 from the infrared spectrum of Klemperer [23] in 1956, along with v_1 and v_4 from Raman spectra of

Table 1. Experimental (and estimated) vibrational frequencies (cm⁻¹) for AlCl₃.

$v_1(A_1')$	$v_2(A_2^{\prime\prime})$	$v_3(E')$	$v_4(E')$	Method ^a ; Reference
541	_	808	348	Compiled; Landolt-Börnstein (1951) [13]
350	215	615	130	Estd.; Heise and Wieland (1951) [21]
-	_	610	_	IR; Klemperer (1956) [23]
345	230	_	135	Estd.; JANAF (1962) [24]
100	245	_	150	Estd.: JANAF (1963) [25]
115 ± 15	95 ± 15	_	=	ED; Zasorin and Rambidi (1967) [26]
=	110	_	_	ED; Cyvin and Brunvoll (1969) [30]
571	_	_	146	Ra; Beattie and Horder (1969) [22]
-	185	_	_	Estd.; JANAF (1971) [36]
682 ± 0.5	182.8	594.7	149.2	IR(Ar); Lesiecki and Shirk (1972) [37]
-	160 - 170	615	_	IR; Selivanov and Maltsev (1973) [43]
-	174	_	142	IR(Xe); Perov et al. (1974) [44]
75	183	595	150	Selected; Shimanouchi (1974) [45]
-	_	619.1	_	IR (Ar); Schnöckel (1976) [42]
393.5	_	618.8	150	Ra, IR (Ar); Beattie et al. (1976) [46]
_	137.84	_	_	Calcd.; Goel et al. (1977) [49]
-	183.0	618.6	151.1	IR (Ar); Pong et al. (1978) [47], (1979) [48
691 ± 6	164 ± 10	643 ± 2	154 ± 9	ED; Spiridonov et al. (1981) [50]
375	214	616	148	Ra, IR; Tomita et al. (1983) [1],
				Klaeboe et al. (1984) [54]
				, ,

^a Abbreviations: Calcd. calculated; ED electron diffraction; Estd. estimated; IR infrared; Ra Raman.

Beattie and Horder [22] in 1969 (cf. Table 1). The v_2 frequency still remained unobserved at that time. In the period between these two measurements different estimates of the unknown frequencies have been suggested with the aid of non-spectroscopical evidence. Different versions are found in the JANAF Thermochemical Tables, as estimated by means of thermodynamical data. For v_2 in particular the values 230 cm⁻¹ [24] and 245 cm⁻¹ [25] were proposed (cf. Table 1). Zasorin and Rambidi [26] employed the experimental mean amplitudes and shrinkage effect from a gas electron diffraction investigation [27] in their determination of the AlCl₃ frequencies. Their data (cf. Table 1) include $v_2 = 95$ \pm 15 cm⁻¹. One set of frequencies from JANAF Tables [24] have been applied in some normal coordinate analyses [28, 29] with calculated Coriolis constants [29], mean amplitudes [11, 28] and shrinkage effect [28]. The frequencies from Zasorin and Rambidi [26] have also been used in different vibrational analyses [30, 31]. In one of these works [30] the higher limit of v_2 (viz. 110 cm⁻¹) is advocated. Revised normal coordinate analyses were later performed [32, 33] by taking into account the Raman v_1 frequency from Beattie and Horder [22]. Some of the authors have erroneously referred to the estimated v_3 and v_4 frequencies from Heise and Wieland [21] as spectroscopical ones [30] and even as infrared frequencies [33].

The three observed frequencies [22, 23] for the inplane vibrations of AlCl₃ were adopted in some normal coordinate analyses with calculations of mean amplitudes [34, 35], as well as in a new edition of JANAF Tables [36]. In the latter work [36] the out-of-plane frequency of $v_2 = 185 \text{ cm}^{-1}$ was estimated by fitting to thermodynamical data.

The next major event in the vibrational spectroscopy of AlCl₃ is due to Lesiecki and Shirk [37], who reported the infrared spectrum of matrix-isolated AlCl₃ in solid Ar. The report includes $v_2 = 182.8 \text{ cm}^{-1}$. Its conclusion about a pyramidal equilibrium structure for AlCl₃ aroused some discussion [38–42]. This was a short intermezzo, which ended in a general agreement about the planarity.

In the meantime a new infrared work [43] appeared, which (in addition to an observed v_3) estimated $v_2 = 160-170 \text{ cm}^{-1}$ for AlCl₃. Also some additional infrared matrix-isolation spectra were studied: by Perov et al. [44] in a Xe matrix and Schnöckel [42] in Ne-, Ar- and N₂ matrices. In

Table 1 only the v_3 value from the Ar-matrix spectrum of the latter work [42] is quoted. It was attributed to Al³⁵Cl₃. It may also be of interest to quote the frequency values selected by Shimanouchi [45] in 1974 (cf. Table 1). This set includes some values from Lesiecki and Shirk [37], which later have been revised.

The mentioned discussion about planarity contains some preliminary communications [40, 41] on detailed spectroscopic investigations of matrix-isolated AlCl₃. The full papers appeared later: the Raman and infrared studies of Beattie et al. [46] and infrared studies of Pong et al. [47, 48], all in Ar matrices. The modern matrix-isolation works [42, 46-48] contain ³⁵Cl/³⁷Cl isotopic splittings of some bonds, viz. v_1 [46] and v_3 [42, 46-48]. The values quoted in Table 1 pertain to Al35Cl3. Force-constant calculations are also included [42, 46-48]. The observation of $v_2 = 183 \text{ cm}^{-1}$ by Pong et al. [47, 48] was not confirmed by the other workers [42, 46], who were not able to observe this frequency. The frequencies of Beattie et al. [46] were used in a normal coordinate analysis including mean amplitude calculations by Goel et al. [49]. These investigators calculated $v_2 = 137.84 \text{ cm}^{-1}$ from a force-field approximation.

In a noteworthy work by Spiridonov et al. [50] the harmonic force field of AlCl₃ was determined by new techniques of interpreting gas electron diffraction data. The work contains accurate determinations of the mean amplitudes from electron diffraction at two temperatures. Recent normal coordinate analyses [51–53] have been used to calculate mean amplitudes (or mean-square amplitudes [51, 52]) and Coriolis constants along with other molecular constants of AlCl₃.

The most recent contribution to the vibrational spectroscopy of AlCl₃ is due to Tomita et al. [1] and Klaeboe et al. [54]. Their work includes a Raman and infrared investigation of gaseous AlCl₃, along with a normal coordinate analysis [54] with calculated mean amplitudes. These investigators have reported an observation in infrared of $v_2 = 214$ cm⁻¹ (cf. Table 1). Incidentally, this value coincides almost exactly with the estimate of Heise and Wieland [21] as early as in 1951 (see above).

Calculated and observed mean amplitudes along with the shrinkage effect for AlCl₃ from literature are given in Table 2. In Table 3 the literature data of a calculated Coriolis constant (ζ_3) are given.

Table 2. Mean amplitudes (l in Å) and shrinkage effect (Δ in Å) for AlCl₃ from literature. The temperature is 298 K when not otherwise indicated. Values at higher temperatures are entered in *italics*.

l (Al-Cl)	<i>l</i> (C1 ⋅ ⋅ ⋅ C1)	Δ	Method ^a ; Reference
0.0515	0.0560	_	VS; Nagarajan (1962) [17]
0.0504	0.1103	0.00608	VS; Nagarajan (1966) [28]
0.060 ± 0.005	0.180 ± 0.010	0.04	ED 800 K; Zasorin and Rambidi (1967) [27]
0.0658	0.1758	_	VS 800 K; Zasorin and Rambidi (1967) [26]
0.0494	0.1088	_	VS; Cyvin (1968) [11]
0.047_0	0.108_{9}	0.019_{6}	VS; Cyvin and Brunvoll (1969) [30], Cyvin (1969) [31]
0.064_{5}	0.173_{7}	0.0515	VS 800 K; Cyvin and Brunvoll (1969) [30], Cyvin (1969) [31]
0.048_{1}	0.099_{9}	_	VS; Avasthi and Mehta (1971) [34]
0.048	0.107	_	VS; Cyvin et al. (1974) [32]
0.048_{1}	0.110_{3}	_	VS; Phongsatha and Cyvin (1974) [33]
0.066_{4}°	0.175_{0}	_	VS 800 K; Phongsatha and Cyvin (1974) [33]
0.0481	0.0997	_	VS; Sarkar and Singh (1977) [35]
0.0473	0.0969	_	VS; Goel et al. (1977) [49]
0.0743(3)	0.187(6)	_	ED 1150 K; Spiridonov et al. (1981) [50]
0.0472	0.0967	0.0078	VS; Dhanalakshmi et al. (1982) [53]
0.048	0.100	_	VS; Tomita et al. (1983) [1]
0.066	0.158	-	VS 800 K; Tomita et al. (1983) [1]

^a Abbreviations: ED electron diffraction; VS vibrational spectroscopy.

Table 3. Calculated Coriolis constant of AlCl₃ from literature.

ζ ₃	Reference
0.734	Cyvin et al. (1964) [29]
0.7 ± 0.1	Cyvin and Brunvoll (1969) [30]
0.69286	Natarajan and Somasundaram (1980) [51]
0.6673	Dhanalakshmi et al. (1982) [53]

The VFF, CFF and KFF Approximations

The valence force field (VFF) and central force field (CFF) approximations are well known [9, 55]. They imply $F_{34} = 0$ and $F_{34}^c = 0$, respectively, where F_{34}^c is defined by (3). In an analogous way the Keating force field (KFF) was defined by putting F_{34}^c of (4) equal to zero [4, 6].

The validity of these force field approximations for AlCl₃ was investigated. Table 4 shows the force constants of the three approximations when consistent with the Al³⁵Cl₃ frequencies of Pong et al. [47, 48]; cf. also Table 1. Table 4 includes the calculated ω_3 frequency of the isotopic Al³⁷Cl₃ (designated ω_3^*) in each case. These results may be compared with the experimental value of ω_3^* = 613.2 cm⁻¹ [47, 48]. Hence the conclusion of this test: KFF is the best one of the three approximations, while CFF is the worst. The same conclusion was reached on the basis of the experimental data from Beattie et al. [46]; cf. Table 1. This feature is

demonstrated by a slightly different approach in the following.

An "exact" force field for the E' species is determined by means of ω_3 , ω_4 and ω_3^* . Table 5 shows the results, both using the data of Pong et al. [47, 48], and those of Beattie et al. [46] (cf. Table 1). The latter set was supplemented by $\omega_3^* = 613.3 \text{ cm}^{-1}$ [46]. The conventional (F_{33}, F_{34}, F_{44}) force constants were converted to F_{ij}^c and F_{ij}^k according to (3) and (4). The results are found in Table 5. In both cases we find the relations

$$|F_{34}^{\mathbf{k}}| < |F_{34}| < |F_{34}^{\mathbf{c}}|. \tag{5}$$

This is taken as an indication that VFF is a better approximation than CFF and KFF is still better.

Final Force Field

Tomita et al. [1] determined a harmonic force field of species E' for AlCl₃ from their own infrared gas frequencies and seven isotopic shifts from the matrix-isolation spectra of Beattie et al. [46]. These shifts seem to have been measured with great accuracy. The values 5.5 and 5.4 cm⁻¹ are deduced for the 35 Cl/ 37 Cl shift of $\Delta\omega_3$ from the data of Beattie et al. [46] and of Pong et al. [47, 48], respectively. Schnöckel has reported $\Delta\omega_3 = 5.55 \pm 0.15$ cm⁻¹ [42]. But all these data refer to infrared spectra in an Ar matrix. The computations of Tomita et al. [1] imply that the values are appropriate for gas data too.

Table 4. The E' species force constants (in mdyne/Å) of simple force field approximations, consistent with $\omega_3 = 618.6~{\rm cm}^{-1}$ and $\omega_4 = 151.1~{\rm cm}^{-1}$ for Al 35 Cl $_3$ [47, 48]. Calculated ω_3^* (Al 37 Cl $_3$) in cm $^{-1}$.

Force field	F_{33}	F_{34}	F_{44}	ω_3^*
VFF CFF	2.5388 2.9296	0.0000 -0.1657	0.09960 0.09569	613.47 612.61
KFF	2.6770	-0.0552	0.09560	613.18

Table 5. "Exact" E' species force fields a in mdyne/Å, deduced with the isotopic ω_3^* frequency as additional information.

Coordi- nates ^b	$F_{33}(\Omega)$	$F_{34}(\Omega)$	$F_{44}(\Omega)$	Ref. c
VAL CEN KEA	2.713 2.756 2.665	-0.0686 0.1872 -0.0168	0.0936 0.3746 0.1249	[46]
VAL CEN KEA	2.668 2.777 2.640	-0.0513 0.2291 0.0046	0.0958 0.3831 0.1277	[47, 48]

^a $F_{ij}(\Omega)$ equals F_{ij} , F_{ij}^{c} and F_{ij}^{k} for $\Omega = \pi/2$, $5\pi/6$ and $2\pi/3$, respectively [6].

c References to applied experimental frequencies.

Table 6. Calculated and observed mean amplitudes (l in Å) and calculated Bastiansen-Morino shrinkage effect (Δ in Å) for $Al^{35}Cl_3$.

Tempera ture (K)	- <i>l</i> (Al–Cl)	l (Cl···Cl)	△ (Cl···Cl)	Calc. or Obs. [50]
0 298.15 800 800 1150 1150 1410 1410	0.0443 0.0480 0.0662 0.060(5) a 0.0779 0.074(3) 0.0857 0.083(2)	0.0645 0.0997 0.1580 0.180(10) 0.1889 0.187(6) 0.2089 0.198(7)	0.0029 0.0067 0.0168 - 0.0239 - 0.0293	Calc. Calc. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs.

^a Values in parentheses are estimated total errors ($\times 10^3$).

Table 7. Final E' species force field [1] in terms of different coordinates a.

Coordinates	$F_{33}(\Omega)$	$F_{34}(\Omega)$	$F_{44}(\Omega)$
VAL	2.692	-0.0682	0.0912
CEN	2.729	0.1795	0.3648
KEA	2.644	-0.0180	0.1216

^a See footnote to Table 5.

This is probably a reasonable assumption, although the absolute values of ω_3 vary considerably; it has been reported for ω_3 of Al³⁵Cl₃ (in cm⁻¹): 595.3 in N₂-matrix [42]; 610–616 in gas [1, 23, 43, 54]; 618.6 [47, 48], 618.8 [46] and 619.1 [42] in Ar-matrix; 622.4 in Ne-matrix [42]. In conclusion we believe that the force field of Tomita et al. [1] is about as good as it can be with the experimental evidence available at present. Our recalculation with the reported force field [1] gave $\Delta\omega_3 = 5.48 \text{ cm}^{-1}$.

The adopted force field [1] was used to calculate the $E' \times E'$ Coriolis constant (ζ_3) for $Al^{35}Cl_3$; the result was $\zeta_3 = 0.688$. No experimental value is available. The calculated value is very reasonable, however. It falls within the estimate ($\zeta_3 = 0.7 \pm 0.1$) of Cyvin and Brunvoll [30] made on the basis of the theory of mass influence on Coriolis constants [29]. In this analysis the experimental value ζ_3 ($^{11}BF_3$) = 0.7438 [56] was employed. The application of a slightly more recent value, viz. 0.789 [57], does not alter the conclusion. It has been used in an analysis of the mass influence on ζ_3 for boron trihalides [5] and results in $\zeta_3 = 0.726$ for $Al^{35}Cl_3$.

Calculated mean amplitudes of vibration [11] for AlCl₃ are reported by Tomita et al. [1]. The results were found to be in good correspondence with the experimental data of Spiridonov et al. [50] from gas electron diffraction investigations. The Bastiansen-Morino shrinkage effect [11] is also of interest in modern gas electron diffraction studies. Our calculated values for Al³⁵Cl₃ are found in Table 6, along with recalculated and observed [50] mean amplitudes. In these computations we have applied, in addition to the E' species force field: $\omega_1 = 375 \text{ cm}^{-1}$ [1], $\omega_2 = 214 \text{ cm}^{-1}$ [1], R = 2.068 Å [50].

The final force field of $AlCl_3$ [1] was expressed in terms of the symmetry valence-, central- and Keating coordinates of the present definitions. The force constants of the E' species are given in Table 7. We find the same relation (5) as above, indicating that KFF is a better approximation than either CFF or VFF.

Acknowledgement

Financial support to BNC from The Norwegian Research Council for Science and the Humanities is gratefully acknowledged.

^b Symmetry valence (VAL)-, central (CEN)- and Keating (KEA) coordinates.

- [1] T. Tomita, C. E. Sjøgren, P. Klaeboe, G. N. Papatheodorou, and E. Rytter, J. Raman Spectrosc. 14, 415
- S. J. Cyvin, Spectroscopy Letters 17, 489 (1984).

3] P. N. Keating, Phys. Rev. 145, 637 (1966).

- S. J. Cyvin, Spectroscopy Letters 17, 493 (1984).
- [5] S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Spectros-copy Letters 17, 511 (1984).
- [6] S. J. Cyvin, B. N. Cyvin, and G. Díaz Fleming, Spectrochim. Acta (in press).
- [7] S. J. Cyvin, B. N. Cyvin, T. Mogstad, J. Brunvoll, and G. Díaz Fleming, Spectroscopy Letters 17, 537 (1984).
- J. C. Decius, J. Chem. Phys. 17, 1315 (1949).
- [9] E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York 1955.
- [10] T. Shimanouchi, J. Chem. Phys. 17, 245 (1949).
- [11] S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes, Universitetsforlaget, Oslo, and Elsevier, Amsterdam 1968.
- [12] R. Teranishi and J. C. Decius, J. Chem. Phys. 22, 896 (1954).
- [13] Landolt-Börnstein, Zahlenwerte und Funktionen, Vol. I, Part 2, Springer-Verlag, Berlin 1951.
- [14] H. Gerding and E. Smit, Z. Phys. Chem. **B50**, 171 (1942).
- [15] R. Pajeau, Bull. Soc. Chim. France 15, 59 (1948).
- [16] K. Venkateswarlu and S. Sundaram, J. Chem. Phys. 23, 2368 (1955).
- G. Nagarajan, Bull. Soc. Chim. Belg. 71, 329 (1962).
- [18] K. Venkateswarlu and K. V. Rajalakshmi, Current Science **31**, 141 (1962).
- [19] K. Venkateswarlu and K. V. Rajalakshmi, J. Annamalai University 34, 38 (1962).
- [20] P. Tirugnanasambandam and G. J. Srinivasan, J. Chem. Phys. 50, 2467 (1969).
- [21] M. Heise and K. Wieland, Helv. Chim. Acta 34, 2182
- [22] I. R. Beattie and J. R. Horder, J. Chem. Soc. (A), 2655 (1969).
- [23] W. Klemperer, J. Chem. Phys. 24, 353 (1956).
- [24] D. R. Stull (Project director), JANAF Thermochemical Tables, The Dow Chemical Company, Midland, Michigan 1962.
- [25] D. R. Stull (Project director), JANAF Thermochemical Tables, The Dow Chemical Company, Midland, Michigan 1963.
- [26] E. Z. Zasorin and N. G. Rambidi, Zh. Strukt. Khim. 8,591 (1967).
- [27] E. Z. Zasorin and N. G. Rambidi, Zh. Strukt. Khim. 8, 391 (1967).
- [28] G. Nagarajan, Indian J. Pure Appl. Phys. 4, 423 (1966).
- [29] B. N. Cyvin, S. J. Cyvin, and L. A. Kristiansen, Z. Naturforsch. 19 a, 1148 (1964).
- [30] S. J. Cyvin and J. Brunvoll, J. Mol. Struct. 3, 453 (1969).

- [31] S. J. Cyvin, Kgl. Norske Videnskab. Selskabs Skrifter, No. 1 (1969).
- [32] S. J. Cyvin, B. N. Cyvin, and I. Hargittai, J. Mol. Struct. 23, 385 (1974)
- [33] A. Phongsatha and S. J. Cyvin, Spectroscopy Letters 7, 349 (1974).
- [34] M. N. Avasthi and M. L. Mehta, J. Mol. Struct. 8, 49 (1971).
- [35] P. C. Sarkar and G. C. Singh, Spectroscopy Letters 10, 319 (1977)
- [36] D. R. Stull and H. Prophet (Project Directors), JANAF Thermochemical Tables, 2nd Ed., Washington, D.C. 1971.
- [37] M. L. Lesiecki and J. S. Shirk, J. Chem. Phys. 56, 4171 (1972).
- [38] I. Hargittai and M. Hargittai, J. Chem. Phys. 60, 2563 (1974).
- [39] S. P. Po and W. G. Richards, Chem. Phys. Letters 32, 231 (1975).
- [40] I. R. Beattie, H. E. Blayden, and J. S. Ogden, J. Chem.
- Phys. **64**, 909 (1976). J. S. Shirk and A. E. Shirk, J. Chem. Phys. **64**, 910 (1976).
- [42] H. Schnöckel, Z. anorg. allg. Chem. 424, 203 (1976).
- [43] G. K. Selivanov and A. A. Maltsev, Zh. Strukt. Khim. 14,943 (1973)
- [44] P. A. Perov, S. V. Nedyak, and A. A. Maltsev, Vestn. Mosk. Univ. Khim. 15, 201 (1974).
- [45] T. Shimanouchi, J. Phys. Chem. Ref. Data 3, 269 (1974)
- [46] I. R. Beattie, H. E. Blayden, S. M. Hall, S. N. Jenny,
- and J. S. Ogden, J. Chem. Soc. Dalton, 666 (1976). [47] R. G. S. Pong, A. E. Shirk, and J. S. Shirk, Ber. Bunsenges. Phys. Chem. 82, 79 (1978).
- [48] R. G. S. Pong, A. E. Shirk, and J. S. Shirk, J. Chem. Phys. 70, 525 (1979).
- [49] R. K. Goel, S. D. Sharma, and A. N. Pandey, Spectroscopy Letters 10, 915 (1977).
- [50] V. P. Spiridonov, A. G. Gershikov, E. Z. Zasorin, N. I. Popenko, A. A. Ivanov, and L. I. Ermolayeva, High Temperature Science 14, 285 (1981).
- [51] A. Natarajan and S. Somasundaram, Indian J. Pure Appl. Phys. 20, 318 (1982).
- [52] A. Natarajan and S. Somasundaram, Indian J. Pure Appl. Phys. 20, 498 (1982).
- [53] A. Dhanalakshmi, P. Kamala, and M. Lalitha, Indian J. Pure Appl. Phys. 20, 830 (1982).
- [54] P. Klaeboe, E. Rytter, and C. E. Sjøgren, J. Mol. Struct. 113, 213 (1984).
- [55] G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, D. van Nostrand, Princeton 1945.
- [56] C. W. Brown and J. Overend, Can. J. Phys. 46, 977 (1968).
- [57] S. G. W. Ginn, D. Johansen, and J. Overend, J. Mol. Spectry. 36, 448 (1970).